Synchronization

COS 450 - Fall 2018

Producer - Consumer

Remember the Producer and
Consumer scenario...

..it had a hidden problem

insert()

Is this code COrreC‘b
public void insert(Object item) {
while (count == BUFFER SIZE) {
; //do nothing buffer full
}
=g =
Yes, it is
buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;

}

C0OS450-F16-06-Synchronization - October 8, 2018

4 Similar process happens with

remove() remove that happened with insert.

Is this code COFFE@Ct2
public Object remove() {
while (count == 0) {
; //do nothing buffer empty

}

--count; Yes, it iS

item = buffer[out];
out = (out + 1) % BUFFER_SIZE;
return item;

}

Together However....

public void insert(Object item) {
while (count == BUFFER_SIZE) {
; //do nothing buffer full
}

++count;

butfgyftn] = item;
in = (in + 1) % BUFFER_$iIiBRjic Object remove() {
} while (count == 0) {

; //do nothing buffer empty
}

—-cougdunt;
item = buffer[out];
out = (out + 1) % BUFFER_SIZE;

return item;

...we have a problem

Look at “++count”?

If we dig deeper we see...

1: movl _count (%ebx) , %eax ; load

2: cmpl $10, %eax ; compare
3: je 1 ; loop

4: incl %eax ; increment
5: movl %eax, _count(%ebx) ; store

conveniently produced by “gcc -02 -S count.c”

C0OS450-F16-06-Synchronization - October 8, 2018

...and “--count”

If we dig deeper we see...

movl _count (%ebx) , %eax

; load
testl %eax, %eax ; compare
je 1 ; loop

: decl %eax ; decrement
: movl %eax, _count (%ebx) ; store

oS WN

conveniently produced by “gcc -02 -S count.c”

When they run Concurrent|y

we migrwnaxwgils...co u nt?

Al:
: cmpl
A3:
Ad:
Bl:
B2:
B3:
B4:
B5:
A5:

movl

je
incl
movl
testl
je
decl
movl
movl

_count (%ebx) , %eax
$10, %eax
1

%eax

_count (%ebx) , %eax
%eax, %eax

1

%eax

%eax, _count (%ebx)
%eax, _count (%ebx)

load
compare
loop
increment
load
compare
loop
decrement
store

; store

C0OS450-F16-06-Synchronization - October 8, 2018

10
Critical Section

Some bits of code are rather
important.

don’t interrupt them

11
insert()
public void insert(Object item) {
while (count == BUFFER_SIZE) {
; //do nothing buffer full
}
Just this line. What is Critical?
++count;
buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;
}
12 Similar process happens with

remove() remove that happened with insert.

public Object remove() {
while (count == 0) {
; //do nothing buffer empty

}

--count;

Same thing here

item = buffer[out];
out = (out + 1) % BUFFER_SIZE;
return item;

}

C0OS450-F16-06-Synchronization - October 8, 2018

Solved!

public void insert(Object item) {
while (count == BUFFER SIZE) {
; //do nothing buffer full
}
enterCs() ;
++count;
leaveCS() ;
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

}

13

14
A solution must ensure...
Mutual Exclusion
Progress
Bounded Waiting
15

Software Solution

Two process solution

— e o ~-ll

Assume LOAD and STORE are atO m |C

Peterson’s Solution in textbook

C0OS450-F16-06-Synchronization - October 8, 2018

Hardware Solutions

16

Get and Set

// lock is shared by all threads
HardwareData lock = new HardwareData(false);

while (true) {
while (lock.getAndSet (true))
Thread.yield();

criticalSection();
lock.set (false);
remainderSection();

17

Swap

// lock is shared by all threads
HardwareData lock = new HardwareData(false);

// each thread has a local copy of key
HardwareData key = new HardwareData(true);

while (true) {
key.set (true);

do {
lock.swap (key) ;

while (key.get() == true);
criticalSection();

lock.set(false);
remainderSection();

18

COS450-F16-06-Synchronization - October 8, 2018

Semaphores

an integer based synchronization

mechanism

19

20
Operations
Semaphores have tWO Operations
defined on them...
acquire
release
21

Semaphore Use

Semaphore S = new Semaphore ()
S.acquire();
// critical section

S.release();

...this is a simple mutex lock or

binary semaphore

C0OS450-F16-06-Synchronization - October 8, 2018

Multiple Resources

Semaphore S = new Semaphore (10)

S.acquire();

// critical section

S.release();

...here we can enter the critical section
multiple times

22

Monitors

language based .

.insava, SYNChronized: o

23

Synchronized insert() and remove() methods

public synchronized void insert(Object item) {

}

while (count == BUFFER SIZE)
Thread.yield();

++count ;
buffer[in] = item;
in = (in + 1) % BUFFERSIZE;

public synchronized Object remove() {

Object item;

while (count == 0)
Thread.yield();

--count;

item = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;

24

C0OS450-F16-06-Synchronization - October 8, 2018

Implementation Details
busy waiting (spinlock)

while (canEnter() { }

wait and notify
while(canEnter()) { wait(); }

25

When a thread invokes wait():

1. The thread releases the object lock;
2. The state of the thread is set to Blocked;
3. The thread is placed in the wait set for the object.

When a thread invokes notify():

1. An arbitrary thread T from the wait set is selected;
2. T is moved from the wait to the entry set;
3. The state of T is set to Runnable.

26

public synchronized void insert(Object item) {
vhile (count == BUFFERSIZE) {
try {
waitQ;

catch (InterruptedException e) { }
++count;
buffer[in] = item;
in = (in + 1) % BUFFERSIZE;

notifyQ;

}

public synchronized Object remove() {
Object item.

while (count == 0) {
try {
wait();

catch (InterruptedException e) { }

unt ;
item = buffer[out];
out = (out + 1) % BUFFER SIZE;

notifyO;

return item;

27

C0OS450-F16-06-Synchronization - October 8, 2018

Classic Synchronization
Problems

Bounded Buffer

Readers-Writers

Dining Philosophers

28

29
Bounded Buffer
Multiple processes share a common
memo ry buffer.
30

Readers-Writers

Many can
read

Only one
can write

C0OS450-F16-06-Synchronization - October 8, 2018

31

Dining Philosophers

32

33
the problem is...

processes compete for resources

COS450-F16-06-Synchronization - October 8, 2018

how a process uses a resource...

Request

[A)

Releas‘ “]se

34

deadlock can only exist if...

35

/.

Mutual Exclusion

36

COS450-F16-06-Synchronization - October 8, 2018

37

No Preemption

38

Circular Wait

39

COS450-F16-06-Synchronization - October 8, 2018

N Why have
these cars
been abandoned?

|
4

= —

40

41
How to handle deadiock
Prevent - 4 conditions
Avoid - safe states
Detect - after the fact
Ignore - it’s the administrator’s problem
42

Prevention

don’t let the conditions exist that cause deadlock...

Mutual Exclusion

Hold and Wait
i e No Preemption
t i 1 Circular Wait

C0OS450-F16-06-Synchronization - October 8, 2018

43
Avoidance

keep from going into a state that may allow deadlock...

Safe States
Unsafe States

apmiivge ey ’I
L e ...using Banker’s, Safety,
e 1 Resource-Request algorithms.
t L K]

IN THEATERS JANUARY 25

C0OS450-F16-06-Synchronization - October 8, 2018

Deadlock

Mutual Exclusion
Hold and Wait
No Preemption (of resources)

Circular Wait

46

Synchronization

End of Section

47

C0OS450-F16-06-Synchronization - October 8, 2018

